Phenolic and Triterpenoid Glycosides from Pyrola calliantha

by Yi-Lei Chen, Chang-Heng Tan, Jun-Jie Tan, Shi-Jin Qu, Heng-Bin Wang, Qiang Zhang, Shan-Hao Jiang, and Da-Yuan Zhu*

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, P. R. China (phone: +86-21-50806728; fax: +86-21-50807088; e-mail: dyzhu@mail.shcnc.ac.cn)

Pyrocallianthasides A (1) and B (2), a new dimer and a new mono-deglucosyl trimer of homoarbutin (=4-hydroxy-3-methylphenyl β -glucopyranoside), and callianthaside A (3), a new ursane-type triterpene glycoside, together with three known phenolic glycosides and three known ursane-type triterpenoids, were isolated from the whole plants of *Pyrola calliantha*. The structures of 1-3 were elucidated by chemical and spectroscopic methods.

Introduction. – As a traditional Chinese medicine, *Pyrola calliantha* H. ANDR. (Pyrolaceae) has been used for the treatment of rheumatoid arthritis and gastric or pulmonary hemorrhage [1]. In previous studies on this plant, several compounds were obtained from its AcOEt extract, including homoarbutin, renifolin, hyperin and its glycosides [2], hydroxylrenifolin, ursolic acid [3], chimaphilin, and quercetin [4]. Our phytochemical investigation of the 50% EtOH extract of the title plant led to the isolation of nine compounds, comprising two new phenolic glycosides, *i.e.*, pyrocallianthasides A (1) and B (2), a new triterpenoid glycoside, *i.e.*, callianthaside A (3), and six known compounds, *i.e.*, homoarbutin and isohomoarbutin [5], pyrolaside A [6], asiatic acid [7], $(2\alpha, 3\beta)$ -2,3,23,24-tetrahydroxyurs-12-en-28-oic acid [8], and $(2\alpha, 3\beta, 4\alpha, 19\alpha)$ -2,3,19,23-tetrahydroxyurs-12-en-28-oic acid β -glucopyranosyl ester [9]. In this paper, we report the isolation and structural elucidation of 1-3.

Results and Discussion. – Pyrocallianthaside A¹) (1) was obtained as white amorphous powder. Its HR-ESI-MS showed a quasi-molecular-ion peak $[M + Na]^+$ at m/z 593.1841, in accord with the molecular formula $C_{26}H_{34}O_{14}$. The acid-hydrolysis experiment gave glucose as the sugar moiety. The ¹H-NMR spectrum (*Table 1*) revealed two individual β -glucopyranosyl groups in the molecule of **1**. The detailed NMR studies and biogenetic considerations allowed us to elucidate the structure of **1** as $4-O_{5}$ '-didehydrobis[4-hydroxy-3-methylphenyl β -glucopyranoside].

The ¹H-NMR spectrum of **1** displayed signals for a 1,3,4-trisubstituted aromatic ring (δ 6.96 (d, J = 3.0 Hz, H–C(2)), 6.78 (d, J = 9.0 Hz, H–C(5)), and 6.86 (dd, J = 9.0, 3.0 Hz, H–C(6)), a 1,3,4,5-tetrasubstituted aromatic ring (δ 6.54 and 6.03, each d, J = 2.4 Hz, H–C(2') and H–C(6')), two Me groups (δ 2.12 and 2.14 (each s)), and two glucopyranose moieties (δ 4.77 (d, J = 4.77 Hz) and 4.53 (d, J = 7.8 Hz)). In the ¹³C-NMR spectrum of **1** (*Table 1*), twelve aromatic C-atoms (5 CH and 7 C), two Me

¹⁾ Arbitrary atom numbering; for systematic names, see *Exper. Part.*

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Key HMBC correlations $(H \rightarrow C)$ and structures of 1-3

groups, and two β -glucopyranose units were observed. The above NMR evidences indicated **1** to be a homoarbutin (=4-hydroxy-3-methylphenyl β -D-glucopyranoside) dimer. The HMQC and HMBC (*Figure*) experiments allowed to unambiguously assign all ¹H- and ¹³C-NMR signals of the two homoarbutin units. The linkage position of the dimer was suggested at 4-0,5' on the basis of biogenetic consideration (assuming that **1** was biosynthesized through OH-C(4) of unit A attacking C(5') of ring B), and which was also supported by the chemical shift of C(4) (δ 148.6), C(5') (δ 145.7) and C(4') (δ 139.9).

Pyrocallianthaside B¹) (2) was obtained as white amorphous powder. The HR-ESI-MS gave the molecular formula $C_{33}H_{40}O_{16}$ ($[M+Na]^+$ at m/z 715.2209). The acid hydrolysis and HPLC analysis, as well as the ¹H- and ¹³C-NMR data (*Table 1*) indicated the presence of two individual β -glucopyranose moieties. Further NMR data and biogenetic considerations concluded the structure of 2 to be 1-*O*-de(β -glucopyranosyl)pyrolaside B.

The ¹H-NMR spectrum of **2** exhibited six *d* of aromatic protons (δ 6.73, 6.64, 6.76, 6.70, 6.41, and 6.04), and three *s* of Me groups (δ 2.18, 2.11, and 2.09) for the aglycone, demonstrating a monodeglucosylated homoarbutin trimer, which was consistent with the ¹³C-NMR data (18 sp² C-atoms and 3 Me) for the aglycone. The two β -glucopyranose units were established by the anomeric-proton signals at δ 4.52 (*d*, *J* = 7.8 Hz) and 4.54 (*d*, *J* = 7.8 Hz). The HMBC analysis (*Figure*) elucidated the assignments of the ¹H- and ¹³C-NMR signals for the three phenolic units; however, no significant HMBC correlations among the three fragments were observed. The linkage between rings A and B was deduced to be C(5)–C(5') based on two quaternary C-signals at δ 128.0 and 134.5. Two deshielded ¹³C signals at δ 144.5

2422

	$1((D_6)DMSO)$		$2(CD_3OD)$	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1)	-	153.9	-	155.6
H-C(2)	6.96 (d, J = 3.0)	119.2	6.73 (d, J = 2.8)	118.4
C(3)	_	130.4	_	134.0
C(4)	_	148.6	_	144.5
H-C(5) or $C(5)$	6.78 (d, J = 9.0)	120.4	_	128.0
H-C(6)	6.86 (dd, J = 9.0, 3.0)	115.0	6.64 (d, J = 2.8)	116.9
Me-C(3)	2.12(s)	16.1	2.11(s)	16.7
C(1')	_	149.9	_	152.0
H-C(2')	6.54 (d, J = 2.4)	112.2	6.76 (d, J = 2.4)	121.0
C(3')	_	126.1	_	128.2
C(4')	_	139.9	_	148.0
C(5')	_	145.7	_	134.5
H-C(6')	6.03 (d, J = 2.4)	103.6	6.70 (d, J = 2.4)	118.0
Me-C(3')	2.14(s)	16.5	2.18(s)	17.0
C(1")	_	_	_	151.5
H-C(2'')			6.41 $(d, J = 2.4)$	113.1
C(3")			_	126.2
C(4")			_	140.5
C(5")			_	147.2
H-C(6'')			6.04 (d, J = 2.4)	102.8
Me-C(3'')			2.09(s)	16.1
Glc-1 ^a):				
H-C(1)	4.77 (d, J = 7.8)	101.2	4.52 (d, J = 7.8)	103.9
H-C(2)	3.30 - 3.33(m)	76.9	3.31 - 3.33(m)	77.7
H-C(3)	3.19 - 3.22(m)	73.3	3.34 - 3.36(m)	74.8
H-C(4)	3.27 - 3.30(m)	69.6	3.39 - 3.41(m)	71.0
H-C(5)	3.11 - 3.13 (m)	77.0	3.44 - 3.46(m)	77.8
$CH_2(6)$	3.43 - 3.46(m),	60.6	3.63 - 3.67 (m),	62.5
2()	3.57 (dd, J = 12.0, 1.8)		3.81 (d, J = 11.4)	
Glc-2 ^a):				
H-C(1)	4.53 (d, J = 7.8)	101.6	4.54 (d, J = 7.8)	103.2
H-C(2)	3.24 - 3.27 (m)	76.4	3.22 - 3.24 (m)	77.6
H-C(3)	3.07 - 3.09(m)	73.2	3.29 - 3.31 (m)	74.9
H-C(4)	3.13 - 3.15(m)	69.8	3.24 - 3.26(m)	71.4
H-C(5)	3.14 - 3.16 (m)	76.5	3.38 - 3.40 (m)	77.8
$CH_2(6)$	3.38 - 3.42 (m),	60.7	3.67 - 3.69 (m),	62.1
21 7	3.68 (dd, J = 12.0, 1.8)		3.70 (dd, J = 12.6, 2.4)	
^a) ¹ H and ¹³ C Assign	ments may be interchanged f	or the corresp	ponding sites of both glucosyl	moieties.

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**¹). δ in ppm, *J* in Hz.

(C(4)) and 147.2 (C(5")) in rings A and C suggested the presence of a C(4)–O-C(5") moiety. Such a structure was very similar to that of pyrolaside B [6]. The most important difference of the ¹³C-NMR data between **2** and pyrolaside B was that the latter had additional glucose signals. Therefore, the structure of **2** was determined to be 1-O-de(β -glucopyranosyl)pyrolaside B.

Callianthaside A (3), obtained as colorless amorphous powder, was shown to have the molecular formula $C_{36}H_{58}O_{11}$ based on the HR-ESI-MS ($[M+Na]^+$ at m/z

689.3871). The structure of **3** was established to be $(2\alpha, 3\beta, 4\alpha)$ -2,3,23,30-tetrahydroxyurs-12-en-28-oic acid β -glucopyranosyl ester by NMR studies (*Table 2*), acid hydrolysis, and HPLC analysis.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
CH ₂ (1)	1.95 - 1.97(m),	48.1	CH ₂ (21)	1.49 - 1.52 (m),	25.9
	0.88 - 0.90 (m)			1.64 - 1.67 (m)	
H-C(2)	3.67 - 3.69(m)	69.7	$CH_{2}(22)$	1.60 - 1.61 (m),	37.3
H-C(3)	3.35 - 3.36(m)	78.3		1.78 - 1.82 (m)	
C(4)	-	44.1	$CH_{2}(23)$	3.25 (d, J = 11.4),	66.4
H-C(5)	1.26 (br. s)	48.3		3.49 (d, J = 11.4)	
$CH_{2}(6)$	0.79 - 0.81 (m)	19.1	Me(24)	0.69(s)	13.9
$CH_{2}(7)$	1.28 - 1.30(m),	33.7	Me(25)	1.04 (s)	18.0
	1.59 - 1.63 (m)		Me(26)	0.84(s)	17.8
C(8)	-	41.0	Me(27)	1.13 (s)	24.0
H-C(9)	3.32 - 3.33 (m)	49.0	C(28)	_	177.9
C(10)	-	39.0	Me(29)	0.91 (d, J = 6.4)	17.1
$CH_2(11)$	1.96 - 1.98 (m)	24.5	$CH_{2}(30)$	3.51 - 3.54(m),	65.9
H - C(12)	5.32 (br. s)	127.3		3.64 (dd, J = 10.8, 3.0)	
C(13)	-	139.1	Glc:		
C(14)	-	43.4	H-C(1)	5.34 (d, J = 7.8)	95.7
CH ₂ (15)	1.25 - 1.28 (m)	29.2	H-C(2)	3.32–3.34 <i>(m)</i>	78.6
$CH_{2}(16)$	1.73 - 1.75(m)	25.2	H-C(3)	3.30 - 3.33(m)	71.2
C(17)	-	49.5	H-C(4)	3.37 - 3.40 (m)	78.3
H - C(18)	2.27 (d, J = 11.6)	54.1	H-C(5)	3.28 - 3.30 (m)	73.9
H-C(19)	1.67 - 1.68 (m)	34.4	$CH_{2}(6)$	3.79 (dd, J = 12.0, 1.8),	62.5
H - C(20)	0.90 - 1.03 (m)	47.6		3.64 - 3.67 (m)	

Table 2. ¹*H*- and ¹³*C*-*NMR* Data (CD₃OD) of **3**. δ in ppm, J in Hz.

The ¹H- and ¹³C-NMR spectra, together with acid hydrolysis and HPLC analysis, showed the presence of a β -glucopyranose in the molecule of **3** (δ (H) 5.34 (d, J = 7.8 Hz)). The ¹H-NMR spectrum displayed four Me *s* at δ (H) 0.69, 0.84, 1.04, and 1.13, one Me *d* at δ (H) 0.91 (J = 6.4 Hz), and an olefinic proton at δ (H) 5.32 (br. *s*, H–C(12)) for the aglycone. The ¹³C-NMR spectrum displayed 30 C-signals (5 Me, 10 CH₂, 8 CH, and 7 C), including the diagnostic C=O group (δ (C) 177.9) and C=C bond (δ (C) 127.3 and 139.1) for the aglycone. The above-mentioned evidences indicated a ursane-type triterpene glycoside. The ¹H- and ¹³C-NMR data of **3** were nearly superposed with those of quadranoside IV (=(2α , 3β , 4α)-2,3,23-trihydroxyurs-12-en-28-oic acid β -glucopyranosyl ester) [10], except for one CH₂ (δ (C) 65.9; δ (H) 3.53 and 3.64) in **3** replacing the Me–C(20) of quadranoside IV, demonstrating **3** to be 30-hydroxylated quadranoside IV. The assumption was supported by the HMBC cross-peaks H_a–C(30)/C(19) and C(21), and H_b–C(30)/C(20) (*Figure*). The relative configuration of **3** was established to be the same as that of quadranoside IV, based on the similar NMR data.

Experimental Part

General. Column chromatography (CC): silica gel (200-300 mesh; Qingdao Haiyang, Co., China), D1400 macroporous resin (Yangzhou Pharmaceutical Factory, China), Sephadex LH-20 (Pharmacia Biotech AB, Uppsala, Sweden), MCI gel CHP-20P (Mitsubishi Chemical Industries Co., Ltd., Japan),

and ODS-A gel (Greenberbs Science & Technology Development Co., Ltd., Beijing, China); percentage ν/ν . TLC: silica gel HSGF₂₅₄ (Yantai Jiangyou Guijiao Kaifa Co., China). HPLC: Waters HPLC system, Waters-51-HPLC pump, PL-ELS-1000 detector; column Prevail Carbohydrate ES 5 μ (5 μ m, i.d. 4.6 \times 250 mm). Optical rotation: Perkin-Elmer 341 polarimeter. UV Spectra: Shimadzu UV-240 spectrometer; λ_{max} (log ε) in nm. IR Spectra: Nicolet Magna-750-FTIR spectrometer; KBr pellets; in cm⁻¹. NMR Spectra: Bruker AV-400 instrument; at 400 (¹H) and 100 MHz (¹³C); in CD₃OD or (D₆)DMSO solns.; δ in ppm rel. to SiMe₄, J in Hz. ESI-MS and HR-ESI-MS: Finnigan LCQ-Deca and Waters/Micromass Q-Tof-Ultima mass spectrometers, resp.; in m/z (rel. int.).

Plant Material. The fresh whole plant of *Pyrola calliantha* (Pyrolaceae) was collected in Taibai County of Shanxi Province, P. R. China, in February 2006. The plant was identified by Prof. *D. Y. Zhu.* A voucher specimen (No. 0077) was deposited in our laboratory.

Extraction and Isolation. The dry whole herbs of P. calliantha (10 kg) were extracted with 50% EtOH (201) for 3 days at r.t. and for three times. The concentrated extract was subjected to CC (D1400 macroporous resin, 10×65 cm column; H₂O, then 20, 40, 60% EtOH). The 20% EtOH fraction (78 g) was subjected to CC (SiO₂ (2.0 kg), CHCl₃/MeOH 30:1, 20:1, 15:1, 10:1, 8:1, 6:1, 4:1, 7:3, and 1:1): Fr. 1-9. Fr. 8 was subjected to CC (MCI gel CHP-20P, H₂O, then 10, 20, 30, 40, 50, and 60% MeOH): Fr. 8.1-8.7. From Fr. 8.3, 1 (35 mg) and pyrolaside A (12 mg) were obtained, after two CC (1. Sephadex LH-20, H₂O; 2. LiChrospher RP-C18, 20 and 30% MeOH/H₂O). From Fr. 8.4, 2 (16 mg) was obtained, after two CC (1. Sephadex LH-20, H₂O; 2. LiChrospher RP-C18, 25% MeOH/H₂O). The 40% EtOH fraction (60 g) was subjected to CC (SiO₂ (2.0 kg), CHCl₃/MeOH 30:1, 20:1, 15:1, 10:1, 5:1, 5:2, 5:3, 5:4, and 1:1): Fr. A - Fr. I. Then Fr. G was subjected to CC (LiChrospher RP-C18, H₂O, then 10, 20, 30, 40, 50, 60, 70, and 80% MeOH): Fr. G.1-G.9. Fr. G.4 was subjected to CC (Sephadex LH-20, H₂O): Fr. G.4a-G.4f. From Fr. G.4d, 3 (8 mg) was obtained and purified by CC (LiChrospher RP-C18, 30% MeOH/H₂O). From Fr. G.5, $(2\alpha, 3\beta, 4\alpha, 19\alpha)$ -2,3,19,23-tetrahydroxyurs-12-en-28-oic acid β -glucopyranosyl ester (20 mg) was obtained, after two CC (1. Sephadex LH-20, H₂O; 2. LiChrospher RP-C18, 40% MeOH/H₂O). The 60% EtOH fraction (13 g) was subjected to CC (SiO₂ (0.5 kg), CHCl₃/MeOH 40:1, 30:1, 20:1, 10:1, 5:1, and 1:1): Fr. I-Fr. VI. Fr. III was subjected to CC (Sephadex LH-20, H₂O): Fr. III.1 - III.7. From Fr. III.4, homoarbutin (60 mg) and isohomoarbutin (40 mg) were obtained, after CC (LiChrospher RP-C18, 10, and 20% MeOH/H₂O). From Fr. III.5, asiatic acid (10 mg) and (2a,3β)-2,3,23,24-tetrahydroxyurs-12-en-28-oic acid (13 mg) were obtained, after CC (LiChrospher RP-C18, 30, and 40% MeOH/H2O).

Pyrocallianthaside A (=4-O,5'-*Didehydrobis*[4-*hydroxy-3-methylphenyl* β-*Glucopyranoside*] = 4-[5-(β-*Glucopyranosyloxy*)-2-*hydroxy-3-methylphenoxy*]-3-*methylphenyl* β-*Glucopyranoside*; **1**): White amorphous powder. [α]_D²⁵ = -47.8 (*c* = 0.450, MeOH). UV (MeOH): 202 (3.20), 283 (3.65). IR: 3473, 2891, 1630, 1606, 1497, 1365, 1202, 1101, 1070, 1016. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS (pos.): 593.1 ([M+Na]⁺). ESI-MS (neg.): 569.3 ([M-H]⁻). HR-ESI-MS: 593.1841 ([M+Na]⁺, C₂₆H₃₄NaO⁺₁₄; calc. 593.1846).

Pyrocallianthaside B (=1-O-*De*(β-glucopyranosyl)pyrolaside B = 1-O-*De*(β-glucopyranosyl)-5,5':4-O,5''-tetradehydrotris[4-hydroxy-3-methylphenyl β-Glucopyranoside] = 3-{[5'-(β-D-Glucopyranosyloxy)-2',5-dihydroxy-3,3'-dimethyl[1,1'-biphenyl]-2-yl]oxy]-4-hydroxy-5-methylphenyl β-Glucopyranoside; **2**): White amorphous powder. [a]_D²⁵ = -53 (c = 0.175, MeOH). UV (MeOH): 205 (4.17), 288 (4.00). IR: 2924, 1624, 1601, 1497, 1427, 1356, 1196, 1072, 1032. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS (pos.): 715.1 ([M+Na]⁺). ESI-MS (neg.): 691.3 ([M-H]⁻), 1383.6 ([2M-H]⁻). HR-ESI-MS: 715.2209 ([M+Na]⁺, C₃₃H₄₀NaO⁺₁₆; calc. 715.2214).

Callianthaside A (=(2α , 3β , 4α)-2,3,23,30-Tetrahydroxyurs-12-en-28-oic Acid β -Glucopyranosyl Ester; **3**): White amorphous powder. [α]_D²⁵ = +34 (c = 0.200, MeOH). IR: 3421, 2921, 2875, 1736, 1637, 1460, 1385, 1074, 1051. ¹H- and ¹³C-NMR: Table 2. ESI-MS (pos.): 689.3 ([M + Na]⁺). ESI-MS (neg.): 711.5 ([M - COOH]⁻). HR-ESI-MS: 689.3871 ([M + Na]⁺, C₃₆H₅₈NaO⁺₁₁; calc. 689.3877).

Acid Hydrolysis of 1–3. Each sample (2 mg) was treated with 2N aq. HCl at 90° for 4 h. The mixture was neutralized with NaHCO₃, then extracted with BuOH. The aq. soln. was analyzed by ELSD-HPLC (column *Prevail Carbohydrate ES* 5 μ (5 µm, i.d. 4.6 × 250 mm), 80% MeCN/H₂O, flow rate 1.0 ml/min, r.t.). Glucose (standard, t_R 17.5 min; 1, t_R 17.3 min; 2, t_R 17.4 min; 3, t_R 17.5 min) was detected from 1–3.

Helvetica Chimica Acta – Vol. 90 (2007)

REFERENCES

- [1] K. Kagawa, K. Tokura, K. Uchida, H. Kakushi, T. Shike, H. Nakai, *Chem. Pharm. Bull.* 1992, 40, 2083.
- [2] J. X. Wang, X. M. Chen, H. Li, L. Yang, Y. F. Li, W. X. Ren, Z. C. Zhong, Nat. Prod. Res. Dev. 1991, 3, 1.
- [3] J. Shi, J. X. Wang, Nat. Prod. Res. Dev. 2002, 14, 37.
- [4] X. F. Wang, J. M. Zhang, A. L. Cao, G. E. Ma, H. Y. Li, B. J. Yang, Chin. Trad. Herbal Drugs 1988, 19, 8.
- [5] J. S. Kim, S. H. Shim, Y. N. Xu, S. S. Kang, K. H. Son, H. W. Chang, H. P. Kim, K. Bae, Chem. Pharm. Bull. 2004, 52, 714.
- [6] J. Chang, T. Inui, Chem. Pharm. Bull. 2005, 53, 1051.
- [7] G. L. Zhang, Z. Z. Zhou, B. G. Li, Nat. Prod. Res. Dev. 1997, 9, 10.
- [8] M. Ageta, G. Nonaka, I. Nishioka, Chem. Pharm. Bull. 1988, 36, 1646.
- [9] T. Seto, T. Tanaka, O. Tanaka, N. Naruhashi, Phytochemistry 1984, 23, 2829.
- [10] I. K. Adnyana, Y. Tezuka, A. H. Banskota, Q. Xiong, K. Q. Tran, S. Kadota, J. Nat. Prod. 2000, 63, 496.

Received August 2, 2007